STRATEGIC CAPABILITY OF MANUFACTURING FIRM: VALIDITY CONFIRMATION OF MEASUREMENT MODEL

Azim Md. Shamimul
shamimul@oyagsb.uum.edu.my

Haim Hilman
hilman@uum.edu.my

Abdullahi Hassan Gorondutse
abdullahi@uum.edu.my

School of Business Management, University Utara Malaysia
06010 Sintok, Kedah Malaysia

Abstract
Aim of this study is to provide the empirical investigation of the strategic capability, sourcing strategy and firm performance construct of and scale validity of the manufacturing firms in Bangladesh. Validity of these constructs were investigated by confirmatory factor analysis. A sample of 330 manufacturing firms from Bangladesh were analyzed to determine validity of the measurement model. Partial Least Squares (PLS) tool was used to evaluate the validity and scale of strategic capability, sourcing strategy and firm performance. We have found all the indicators of the constructs of the study attain the minimum threshold value. In addition, predictive relevance found of the measurement model.

Keywords: Sourcing Strategy, Competitive Strategy, Sourcing Relationship Quality, Firm Performance, Manufacturing Firm.

INTRODUCTION
Firms in the manufacturing sectors are facing the most inevitable challenge to decide whether products to make through internal effort, or solicit from outside independent suppliers (buy) with a high degree of economies-of-scale to enhance efficiency and productivity (Espino-Rodríguez & Lai, 2014; Hilman & Mohamed, 2011; Lafontaine & Slade, 2007). Efficiency and productivity thru reducing costs, maintain high quality, flexibility, improved delivery dependability, and prompt quick response enable a manufacturing firm to achieve competitiveness and performance (Su & Gargeya, 2012).

To achieve better performance through sourcing a firm might opt to make or buy of sourcing strategy. Implement sourcing strategy or to get the better benefit and to achieve performance a firm requires specific capabilities (Barney et al., 2011; Wang et al., 2015) which have not
investigated. Previous studies not exploit or explore process capability as a strategic factor for manufacturing firms to coordinate interdependent activities and optimize operations with suppliers when a firm adopts buy strategy (Barney et al., 2011; Tang & Rai 2014; Tang & Rai, 2012, Wang et al., 2015).

Especially in the context of Bangladesh as an emerging country, most of the studies only focus on garments manufacturing. Therefore, this study focused on manufacturing sector regardless of any specific industry. We thus, developed a set/bundle of capabilities to match with sourcing strategy through which a firm can perform better than before. In this study we have empirically investigated the strategic capability’s scales and validate through confirmatory factory analysis.

THEORITICAL BACKGROUND

Strategic capability viewed as a resource of firm, deploying and integrating bundle of resources a firm can achieve better performance ever than before. This point of view leads us to conceptualize and give the theoretical base from the resource based view (RBV) of the firm. RBV has been used as a theoretical base in previous literature and argues that to create value and to be competitive a firm must should exploit its collection of resources (Allred, Fawcett, Wallin & Magnan, 2011; Penrose, 1959; Rubin, 1973; Wernerfelt, 1984).

The more valuable and rare the resources, the greater the advantage the firm may obtain (Allred et al., 2011; Dierickx & Cool, 1989). Barney (1991) and Allred et al., (2011) distinguished that a firm’s combination of unique resources leads to stable and achievable firm performance because resources of a firm are heterogeneously distributed. Therefore, a firm when deploy its bundle of resources in accordance with its static position then it is hard to imitate by other firms and focal firm enjoy competitive advantage in market place. This view of firm RBV expanded to focus on how a firm integrates its resources and deploys its resources in accordance with (Mahoney & Pandain, 1992; Priem & Butler, 2001) strategy.

Transaction Cost Economics

According to Williamson (1985), Transaction Cost Economics (TCE) focuses on transactions and the costs incurred via completing transactions by one institutional mode rather than another. The transaction either make or buy a product, is the unit of analysis in TCE, and the means of affecting the transaction is the principal outcome of interest (Tadelis & Williamson, 2012).

TCE suggests that the costs and difficulties associated with market transactions sometimes favour hierarchies (make) and sometimes favor markets (buy). Based on TCE, manufacturing firm makes decision either to produce a product through market based contract if this transaction cost is lower than producing internally (Jaklič et al., 2012; Mohiuddin & Su, 2013). Therefore, based on the TCE assumption and theoretical basis the proposed model of this study is below in Figure 1.
Firm Performance

Firm performance in this study conceptualize as the outcome of the expected strategy and strategic capability of manufacturing firms in Bangladesh. Folan, Browne and Jagdev, (2007) proposed that a firm’s business performance is the outcome of its strategic choices. Firm performance is an ongoing researcher’s debatable area to determine which of the measurement reflect better performance of a firm either financial or non-financial (Ahmad, Wilson, & Kummerow, 2011). Whereas, some researchers focused on both financial and non-final measurement which lead to the overall firm’s performance. Performance measures provide a set of mutually reinforcing signals that direct managers’ attention to the important strategic areas that translate to organizational performance outcomes (Dixon et al., 1990). Firm performance, however, a firm’s final outcome where a firm’s want to reach and successfully achieve its goals and to remain competitive (Yamin et al., 1999; Li et al., 2006).

Strategic Capability

Strategic capability defined as a set of capabilities of a firm to meet objectives of firms and attain competitive advantage over rival. Over years, management scholars and practitioners are giving their effort to identify a set/bundle of competencies which can secure competitive advantage and differentiate the performance of the firm (Dyer & Singh, 1998; Prahalad & Hamel, 1990; Rumelt, Schendel, & Teece, 1991; Stalk, Evans, & Schulman, 1992).

Manufacturing capabilities refer to the abilities of firms in the manufacturing system of mass production, materials purchase, inventory control, capacity management, process management, and product quality management to compete on basic dimensions such as quality, cost, flexibility, and time (Safizadeh et al., 2000). Managers frequently omit a firms’ manufacturing capability as an important aspect in building competitive advantage (Gao, & Tian, 2014; Mukerji, Fantazy, Kumar, & Kumar, 2010).

A purchasing capability of the firm conceptualize in this study as a process capability that leverage process alignment of purchasing of the firm, specifically ability to coordinate...
interdependent activities and optimize purchasing activities with its supplier’s/buyer’s firms. On the other hand, firms need to have the competences and skills for partnering flexibility which is defined as their ability to adjust its supplier portfolio according to its product line (Wu et al., 2010; Gunasekaran & Spalanzani, 2012; Shapiro & Varian, 1999). Previous research as suggest that constantly effort on improving processes would increase efficiency, reduces costs, and usually results better performance (Lee et al., 2015; Hammer & Stanton, 1999; Tang & Rai, 2014). Based on the discussion therefore, we have developed the following hypotheses:

H1: Manufacturing capability of the manufacturing firms in Bangladesh has effect on sourcing strategy and firm performance.

H2: Purchasing capability of the manufacturing firms in Bangladesh has effect on sourcing strategy and firm performance.

Sourcing Strategy
Sourcing is a useful way to adapt the firm’s boundaries by restructuring its activities in order to stimulate the growth of its core business (Bustinza, Arias-Aranda, & Gutierrez-Gutierrez, 2010). Sourcing is not simply a purchasing decision also represents the fundamental decision to reject to do an activity in-house (make) and look for outside to optimize productivity and increase performance of a firm (Größler et al., 2013; Hilman & Mohamed, 2011; Quinn, 1999). Based on Transaction Cost Economics (TCE), manufacturing firm makes decision either to produce a product through market based contract if this transaction cost is lower than producing internally (Jaklič et al., 2012; Mohiuddin & Su, 2013). This choice of cost leads a firm to consider sourcing as a strategic forefront of modern practice to compete in industry to achieve better performance and secure competitive advantage (Weele & Raaij, 2014).

H3: Sourcing strategy in Bangladeshi manufacturing firms has positive effect on firm performance

METHOD
This quantitative cross-sectional study was conducted in manufacturing sector in Bangladesh. This study deployed survey approach and developed the instruments used in previous studies to measure the variables in this study. Each items of the instruments were measured on a seven-point Likert scale which are ranging from strongly disagree (1) to strongly agree (7). Strategic capability operationalizes as the combination of manufacturing capability and purchasing capability. Manufacturing capability measured by 5 items and purchasing capability measured by 5 items; were adapted and adopted from the Hsiao and Chen (2013) and Kocabasoglu and Suresh (2006). Sourcing strategy was measured by 12 items which were adapted and adopted from Kotabe and Omura, (1989). Firm performance was measured by 7 items (Venkatraman & Ramanujam, 1986; Lee & Miller, 1996; Kaplan & Norton, 1996).

After developing the questionnaire from the previous studies face and construct validity assessment was conducted. Questionnaire was sent to two strategic management professors to critique and check ambiguity, clarity, and suitability of the items used to operationalize each construct (DeVellis, 2016). Their assessment leaded to the further modification of the items to measure the construct.

Data were collected for this quantitative research to test the hypothesis of the causal effect of the exogenous latent constructs on endogenous latent constructs (Sekaran & Bougie, 2013).
Initial number of sample was 381 manufacturing firms in Bangladesh which was determined according to Krejcie and Morgan (1970). The study used systematic random sampling technique to select each element of sample to distribute the questionnaire. In the systematic sampling technique equal-probability method is used to pick the sample unit (Black, 2010).

The completed and modified final version of survey questionnaires were sent to the manufacturing firm’s key person (such as CEO, general manager, CFO, and/owner) who has overall strategic information about the firm and respective performance. To test hypotheses testing and analyzing Partial Least Squares (PLS) path modeling technique with SmartPLS 3.2.6 tools. Several previous studies argued the suitability of using PLS over other co-variance based analysis tool, and suggested that PLS is less restrictive, small sample size applicable, distributional assumption, and gives advantage if model is complex (Chaouali, Yahia, & Souiden, 2016; Hair et al., 2014; Ringle et al., 2012).

RESULTS

This study seeks to provide a measurement validity of the proposed model. To achieve the goals, we measured the scaled developed in this study based on previous literature. To assess the validity of the measurement model we used the confirmatory factor analysis technique. Analysis was carried out by using SmartPLS 3.

Earlier to proceed with validating the measurement model of the study; we presented the descriptive and demographic of the respondents, in Table 1. We distributed 762 survey questionnaire among manufacturing firms in Bangladesh out of which 330 complete and usable questionnaires returned and this represents 43.31%.

Two large portions are Garments manufacturing industry represents 36.37% and F&B 23.64%. Size of the manufacturing firms differs; we have found that the largest portion of the respondent are with the 101 to 200 employee which represents the 29.4%.

We have presented the result of descriptive analysis of the study variables in Table 2; we had performed descriptive analysis to summarize and explain the main features of the constructs from the respondent’s point of view. Descriptive statistics of the constructs we conducted due to know the fact that dimensions explained through mean, standard deviation and variance suggested by Sekaran & Bougie (2013). We have found the minimum response from respondent was 1 and maximum 7. Mean value of all constructs of the study are more than 5.
Table 1

Demographic Statistics of the Study

<table>
<thead>
<tr>
<th>Title</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garments Manufacturing</td>
<td>121</td>
<td>36.67</td>
</tr>
<tr>
<td>Electrical & Electronics</td>
<td>48</td>
<td>14.54</td>
</tr>
<tr>
<td>Leather</td>
<td>46</td>
<td>13.94</td>
</tr>
<tr>
<td>Food and beverage</td>
<td>78</td>
<td>23.64</td>
</tr>
<tr>
<td>Others</td>
<td>37</td>
<td>21.21</td>
</tr>
<tr>
<td>Number of Employee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than 50</td>
<td>32</td>
<td>9.7</td>
</tr>
<tr>
<td>51-100</td>
<td>21</td>
<td>6.4</td>
</tr>
<tr>
<td>101-200</td>
<td>97</td>
<td>29.4</td>
</tr>
<tr>
<td>201-400</td>
<td>96</td>
<td>29.1</td>
</tr>
<tr>
<td>401-600</td>
<td>59</td>
<td>17.9</td>
</tr>
<tr>
<td>601-1000</td>
<td>19</td>
<td>5.8</td>
</tr>
<tr>
<td>More than 1000</td>
<td>6</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Table 2

Descriptive Result of Study Variables

<table>
<thead>
<tr>
<th>Name of the Construct</th>
<th>Sample (n)</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean ((\bar{x}))</th>
<th>Standard Dev. ((\sigma_{\bar{x}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Capability</td>
<td>330</td>
<td>1</td>
<td>7</td>
<td>5.42</td>
<td>1.26</td>
</tr>
<tr>
<td>Purchasing capability</td>
<td>330</td>
<td>1</td>
<td>7</td>
<td>5.37</td>
<td>1.01</td>
</tr>
<tr>
<td>Sourcing Strategy</td>
<td>330</td>
<td>1</td>
<td>7</td>
<td>5.44</td>
<td>1.16</td>
</tr>
<tr>
<td>Firm Performance</td>
<td>330</td>
<td>1</td>
<td>7</td>
<td>5.71</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Measurement Model

We ensured convergent validity of to show that the constructs’ measures which should theoretically be related to each other are actually found related in such manner after the analysis. To validated measurement of the study we confirmed the convergent validity and discriminant validity. Hair et al. (2010) suggested three types of estimations to confirm/validate convergent validity of measurement model; factor loadings, composite reliability (CR), and average variance extracted (AVE). Align with this suggestion we conducted factor analysis of constructs presented in Figure 2.; all of the item loadings are examined and a loading value of 0.50 or more is suggested as acceptable in the literature of multivariate analysis (Fornell & Larcker, 1981; Hair et al., 2010).

Consequently, we analyzed composite reliability, and AVE of manufacturing capability, purchasing capability, sourcing strategy and firm performance; shown in Table 3. We have found composite reliability (CR) of manufacturing capability 0.924 and AVE 0.709,
purchasing capability CR 0.870 and AVE 0.646, sourcing strategy CR 0.996 and AVE 0.955 and firm performance CR 0.948 and AVE 0.722.

All the constructs manufacturing capability, purchasing capability, sourcing strategy and firm performance values of CR and AVE are higher than the ideal value CR 0.7 and the average variance extracted (AVE) 0.5 suggested by (Fornell & Larcker, 1981; Hair, Black, Babin, Anderson, & Tatham, 2006). It shows the convergent validity of model we proposed in this study. Next step is to confirm discriminant validity of proposed model.

![Figure 2. Factor loadings of constructs](image)

Table 3
Convergent validity results

<table>
<thead>
<tr>
<th>Study Variables</th>
<th>Cronbach's Alpha</th>
<th>Composite Reliability</th>
<th>Average Variance Extracted (AVE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm Performance</td>
<td>0.935</td>
<td>0.948</td>
<td>0.722</td>
</tr>
<tr>
<td>Manufacturing Capability</td>
<td>0.897</td>
<td>0.924</td>
<td>0.709</td>
</tr>
<tr>
<td>Purchasing Capability</td>
<td>0.817</td>
<td>0.879</td>
<td>0.646</td>
</tr>
<tr>
<td>Sourcing Strategy</td>
<td>0.996</td>
<td>0.996</td>
<td>0.955</td>
</tr>
</tbody>
</table>

Whereas, Fawcett et al. (2014) suggested discriminant validity exists when a construct has higher loading than any other constructs. Expected value for discriminant validity is 50% or more variance of indicators are accounted for, which means that the square root of AVE should be more than 0.50. Root squire of average variance extracted (AVE) is examined with correlations among the constructs of the study in line with suggestions made by Chin (2010), and Fornell and Larcker (1981). We have found that (in Table 4) manufacturing capability (0.842),
purchasing capability (0.804), sourcing strategy (0.977) and firm performance (0.850) constructs have attained recommended values of discriminate validity.

Table 4

<table>
<thead>
<tr>
<th>Construct</th>
<th>FOP</th>
<th>MAC</th>
<th>PCA</th>
<th>SOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm Performance</td>
<td>0.850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Capability</td>
<td>0.584</td>
<td>0.842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchasing Capability</td>
<td>0.484</td>
<td>0.539</td>
<td>0.804</td>
<td></td>
</tr>
<tr>
<td>Sourcing strategy</td>
<td>0.668</td>
<td>0.771</td>
<td>0.727</td>
<td>0.977</td>
</tr>
</tbody>
</table>

In addition, to confirm the validity of the measurement model of this study we accounted for the R^2 of two exogenous variables (sourcing strategy and firm performance) which are 0.731 and 0.446 and these values are large and satisfactory suggested by Cohen (1992). Moreover, effect size (f^2) of manufacturing capability and purchasing capability on sourcing strategy were 0.756 and 0.506 respectively. Effect size (f^2) of sourcing strategy on firm performance is 0.806. we proceeded with blindfolding analysis to determine predictive relevance (Q^2) of our measurement model and found that firm performance (0.298) and sourcing strategy (0.647). Therefore, we can conclude that predictive relevance of the model exists. Enough Q^2 predictive validity was obtained, as the dependent variable’s validity was 0.310

CONCLUSION

Strategic capability is a critical success factor for most collaboration, but the literature offers little insight as to what types of capabilities that are needed as to ensure successful collaboration and enhance better performance (Barney, Ketchen, & Wright, 2011; Wang et al., 2015). Considering this gap, therefore, we proposed a strategic capability model based on the RBV and TCE that explain the capabilities of a firm and the sources of competitive advantage. To provide empirical justification we conducted survey and investigated through statistical analysis of measurement model. We have found validity of measurement of proposed model exist. Future studies can be conducted to provide empirical evidence of this measurement model by analyzing the effect of indigenous variables to exogenous.

REFERENCES

Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. *Journal of marketing research*, 382-388.

